Demirciler Sanayi Sitesi B5 Blok | No : 118 Basaksehir / ISTANBUL / TURKEY

CONTACT INFORMATION

     +90 212 549 73 94

     +90 212 549 75 93 (FAX)

     info@safakkazan.com

teknik@safakkazan.com

Site Map

Iron represents an example of allotropy in a metal. There are at least four allotropic forms of iron, known as α, γ, δ, and ε; at very high pressures, some controversial experimental evidence exists for a phase β stable at very high pressures and temperatures.[8]

 

Low-pressure phase diagram of pure iron

As molten iron cools it crystallizes at 1538 °C into its δ allotrope, which has a body-centered cubic (bcc) crystal structure. As it cools further to 1394 °C, it changes to its γ-iron allotrope, a face-centered cubic (fcc) crystal structure, or austenite. At 912 °C and below, the crystal structure again becomes the bcc α-iron allotrope, or ferrite. Finally, at 770 °C (the Curie point, Tc) iron becomes magnetic. As the iron passes through the Curie temperature there is no change in crystalline structure, but there is a change in "domain structure", where each domain contains iron atoms with a particular electronic spin. In unmagnetized iron, all the electronic spins of the atoms within one domain are in the same direction, however, the neighboring domains point in various other directions and thus over all they cancel each other out. As a result, the iron is unmagnetized. In magnetized iron, the electronic spins of all the domains are aligned, so that the magnetic effects of neighboring domains reinforce each other. Although each domain contains billions of atoms, they are very small, about 10 micrometres across.[9] At pressures above approximately 10 GPa and temperatures of a few hundred kelvin or less, α-iron changes into a hexagonal close-packed (hcp) structure, which is also known as ε-iron; the higher-temperature γ-phase also changes into ε-iron, but does so at higher pressure. The β-phase, if it exists, would appear at pressures of at least 50 GPa and temperatures of at least 1500 K; it has been thought to have an orthorhombic or a double hcp structure.[8]

 

Iron is of greatest importance when mixed with certain other metals and with carbon to form steels. There are many types of steels, all with different properties, and an understanding of the properties of the allotropes of iron is key to the manufacture of good quality steels.

 

α-iron, also known as ferrite, is the most stable form of iron at normal temperatures. It is a fairly soft metal that can dissolve only a small concentration of carbon (no more than 0.021% by mass at 910 °C).[10]

 

Above 912 °C and up to 1400 °C α-iron undergoes a phase transition from bcc to the fcc configuration of γ-iron, also called austenite. This is similarly soft and metallic but can dissolve considerably more carbon (as much as 2.04% by mass at 1146 °C). This form of iron is used in the type of stainless steel used for making cutlery, and hospital and food-service equipment.[9]

 

The high-pressure phases of iron are important as endmember models for the solid parts of planetary cores. The inner core of the Earth is generally assumed to consist essentially of an iron-nickel alloy with ε (or β) structure.

 

The melting point of iron is experimentally well defined for pressures up to approximately 50 GPa. For higher pressures, different studies placed the γ-ε-liquid triple point at pressures differing by tens of gigapascals and yielded differences of more than 1000 K for the melting point. Generally speaking, molecular dynamics computer simulations of iron melting and shock wave experiments suggest higher melting points and a much steeper slope of the melting curve than static experiments carried out in diamond anvil cells.[11]

 

Iron Fabrications